Lift Enhancement of Pliant Wings Through Bio-Mimicry
نویسنده
چکیده
Flexible aerodynamic surfaces have been shown to favorably influence flight characteristics by increasing lift, angle of attack at stall, and resistance to perturbation. The objective of the research presented within this thesis is to investigate the influence of two aspects of flight observed in biological flyers, a suction-surface flap and dynamic stall, when applied to pliant wings. A rigid flat plate and membrane wing, both with an aspect ratio of 2, were tested at Reynolds numbers between 50,000 and 100,000 in two sets of experiments to quantify the effects on the membrane wing of a passively actuated pop-up flap and dynamic stall. The first set of experiments presented examines the effect of the suction-surface flap for various Reynolds numbers and various pre-strains, and compares the results to a rigid plate. The results of this experiment show that there is a relationship between membrane camber and flap effectiveness, and that an optimum level of membrane camber exists for a given membrane and flap condition. The second set of experiments presented evaluates the differences in dynamic stall behavior between a rigid plate and a pre-strained membrane wing. A similar form of lift hysteresis is observed for the pliant wing as has been studied for rigid wings. Both the static and the dynamic lift curves reach a higher maximum lift for the membrane wing in comparison to the rigid plate.
منابع مشابه
Lift Enhancement for Low-Aspect-Ratio Wings with Periodic Excitation
In an effort to enhance lift on low-aspect-ratio rectangular flat-plate wings in low-Reynolds-number poststall flows, periodic injection of momentum is considered along the trailing edge in this numerical study. The purpose of actuation is not to reattach the flowbut to change the dynamics of thewake vortices such that the resulting lift force is increased. Periodic forcing is observed to be ef...
متن کاملEvolution of the wave: aerodynamic and aposematic functions of butterfly wing motion.
Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for ...
متن کاملThe aerodynamic effects of wing-wing interaction in flapping insect wings.
We employed a dynamically scaled mechanical model of the small fruit fly Drosophila melanogaster (Reynolds number 100-200) to investigate force enhancement due to contralateral wing interactions during stroke reversal (the ;clap-and-fling'). The results suggest that lift enhancement during clap-and-fling requires an angular separation between the two wings of no more than 10-12 degrees . Within...
متن کاملA computational fluid dynamics of 'clap and fling' in the smallest insects.
In this paper, we have used the immersed boundary method to solve the two-dimensional Navier-Stokes equations for two immersed wings performing an idealized 'clap and fling' stroke and a 'fling' half-stroke. We calculated lift coefficients as functions of time per wing for a range of Reynolds numbers (Re) between 8 and 128. We also calculated the instantaneous streamlines around each wing throu...
متن کاملKinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae
The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7 m/s), to determine how factors affe...
متن کامل